已知,命题函数在上单调递减,命题曲线与轴交于不同的两点,若为假命题,为真命题,求实数的取值范围。
在△ABC中,A,B,C所对的边分别是 (1)用余弦定理证明:当C为钝角时,; (2)当钝角△ABC的三边是三个连续整数时,求△ABC外接圆的半径.
如图,已知与圆相切于点,经过点的割线交圆于点、,∠APC的平分线分别交、于点、. (1)证明:∠ADE=∠AED; (2)若AC=AP,求的值.
正方体中,连接. (1)求证:∥平面; (2)求证:平面∥平面; (3)设正方体的棱长为,求四面体的体积.
如图,四棱锥中,四边形是正方形,若分别是线段的中点. (1)求证:||底面; (2)若点为线段的中点,平面与平面有怎样的位置关系?并证明。
在中,三内角、、的对边分别是、、. (1)若求; (2)若,,试判断的形状.