某年级先后举办了数学、历史、音乐的讲座,其中有75人听了数学讲座,68人听了历史讲座,61人听了音乐讲座,17人同时听了数学、历史讲座,12人同时听了数学、音乐讲座,9人同时听了历史、音乐讲座,还有6人听了全部讲座.求听讲座的人数.
已知.(1)解不等式;(2)若关于的不等式对任意的恒成立,求的取值范围.
在直角坐标平面内,直线l过点P(1,1),且倾斜角α=.以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=4sinθ.(1)求圆C的直角坐标方程;(2)设直线l与圆C交于A、B两点,求|PA|·|PB|的值.
已知为实数,函数.(1)是否存在实数,使得在处取得极值?证明你的结论;(2)设,若,使得成立,求实数的取值范围.
设函数,(1)若,求取值范围;(2)求的最值,并给出最值时对应的的值.
已知函数(1)若,求在点处的切线方程;(2)若,求函数在上的最大值和最小值.