已知{an}是等差数列,其前n项的和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=21,S4+b4=30.(1)求数列{an}和{bn}的通项公式;(2)记cn=anbn,n∈N*,求数列{cn}的前n项和.
(本小题满分13分)已知函数是函数的极值点。(I)求实数a的值,并确定实数m的取值范围,使得函数有两个零点;(II)是否存在这样的直线,同时满足:①是函数的图象在点处的切线 ②与函数 的图象相切于点,如果存在,求实数b的取值范围;不存在,请说明理由。
(本小题满分13分)已知椭圆C:的左、右顶点的坐标分别为,,离心率。(Ⅰ)求椭圆C的方程:(Ⅱ)设椭圆的两焦点分别为,,点P是其上的动点,(1)当 内切圆的面积最大时,求内切圆圆心的坐标;(2)若直线与椭圆交于、两点,证明直线与直线的交点在直线上。
(本小题满分13分)某公司是专门生产健身产品的企业,第一批产品上市销售40天内全部售完,该公司对第一批产品上市后的市场销售进行调研,结果如图(1)、(2)所示.其中(1)的抛物线表示的是市场的日销售量与上市时间的关系;(2)的折线表示的是每件产品的销售利润与上市时间的关系.(Ⅰ)写出市场的日销售量与第一批产品A上市时间t的关系式;(Ⅱ)第一批产品A上市后的第几天,这家公司日销售利润最大,最大利润是多少?
((本小题满分12分) 如图所示,在棱长为的正方体ABCD—A1B1C1D1中,E、F、H分别是棱BB1、CC1、DD1的中点。
(Ⅰ)求证:BH//平面A1EFD1;
(本小题满分12分)已知某单位有50名职工,从中按系统抽样抽取10名职工,分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示。(Ⅰ)求该样本的方差;(Ⅱ)从这10名职工中随机抽取两名体重不轻于73公斤的职工,求体重为76公斤的职工被抽取到的概率。