如图,边长为1的正三角形所在平面与直角梯形所在平面垂直,且,,,,、分别是线段、的中点.(1)求证:平面平面;(2)求二面角的余弦值.
在极坐标系中,求圆ρ=2cosθ的垂直于极轴的两条切线方程.
在极坐标系中,曲线C1:ρ(cosθ+sinθ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上,求a的值.
若两条曲线的极坐标方程分别为ρ=1与ρ=2cos,它们相交于A、B两点,求线段AB的长.
在极坐标系中,圆C的方程为ρ=2sin,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的方程为y=2x+1,判断直线l和圆C的位置关系.
在极坐标系中,设圆ρ=3上的点到直线ρ(cosθ+sinθ)=2的距离为d.求d的最大值.