求与轴相切,圆心在直线上,且被直线截得的弦长为的圆的方程.
用一块钢锭烧铸一个厚度均匀,且表面积为2m2的正四棱锥形有盖容器(如下图)。设容器高为m,盖子边长为m,(1)求关于的解析式;(2)设容器的容积为V m3,则当h为何值时,V最大? 并求出V的最大值(求解本题时,不计容器厚度).
已知分别是的三个内角的对边,.(1)求角的大小;(2)求函数的值域.
对于函数若存在,使得成立,则称为的不动点.已知(1)当时,求函数的不动点;(2)若对任意实数,函数恒有两个相异的不动点,求的取值范围;(3)在(2)的条件下,若图象上、两点的横坐标是函数的不动点,且、两点关于直线对称,求的最小值.
在平面直角坐标系中,已知圆和圆.(1)若直线过点,且被圆截得的弦长为,求直线的方程;(2)设为平面上的点,满足:存在过点的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点的坐标.
如图,已知在四棱锥中,底面是矩形,平面,、分别是、的中点.(Ⅰ)求证:平面;(Ⅱ)若与平面所成角为,且,求点到平面的距离.