现有甲、乙两个靶.某射手向甲靶射击两次,每次命中的概率为,每命中一次得1分,没有命中得0分;向乙靶射击一次,命中的概率为,命中得2分,没有命中得0分,该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中两次的概率;(2)求该射手的总得分X的分布列及数学期望E(X);(3)求该射手向甲靶射击比向乙靶射击多击中一次的概率.
已知函数. (1)若存在,使f(x0)=1,求x0的值; (2)设条件p:,条件q:,若p是q的充分条件,求实数m的取值范围.
(本小题满分13分)已知函数. (1)若函数在上单调递增,求实数的取值范围. (2)记函数,若的最小值是,求函数的解析式.
(本小题满分12分)在中,角的对边分别为且,bsin(+C)-c sin(+B)="a" , (1)求证: (2)若,求的面积.
(本小题满分13分)某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求,使价格连续下跌.现有三种价格模拟函数:①;②;③.(以上三式中均为常数,且) (1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由) (2)若,,求出所选函数的解析式(注:函数定义域是.其中表示8月1日,表示9月1日,…,以此类推); (3)在(2)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月份内价格下跌.
(本小题满分13分)已知函数()在区间上有最大值和最小值.设. (1)求、的值; (2)若不等式在上有解,求实数的取值范围.