已知函数对任意,都有, 且当时,都有.(1)求 (2)求证:在上单调递减.
(本小题满分12分)已知甲船正在大海上航行。当它位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即以10海里/小时的速度匀速前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,乙船当即决定匀速前往救援,并且与甲船同时到达。(供参考使用:)。(1) 试问乙船航行速度的大小;(2) 试问乙船航行的方向(试用方位角表示,譬如北偏东…度)。
(本小题满分12分)已知各项均为正数的数列中,是数列的前项和,对任意,有(1)求常数的值;(2)求数列的通项公式;(3)记,求数列的前项和。
(本小题满分12分)在直角坐标系中,一运动物体经过点A(0,9),其轨迹方程为y=ax2+c(a<0),D=(6,7)为x轴上的给定区间。(1)为使物体落在D内,求a的取值范围;(2)若物体运动时又经过点P(2,8.1),问它能否落在D内?并说明理由。
(本小题满分12分)已知函数 。(1)若,求的最大值和最小值;(2)若,求的值。
(本小题满分13分)设函数。(1)求的单调区间;(2)若当时,(其中)不等式恒成立,求实数的取值范围;(3)试讨论关于的方程:在区间上的根的个数。