列{an}的前n项和为Sn,已知Sn+1=pSn+q(p,q为常数,n∈N*),a1=2,a2=1,a3=q-3p.(1)求p,q的值;(2)求数列{an}的通项公式;(3)是否存在正整数m,n,使成立?若存在,求出所有符合条件的有序实数对(m,n);若不存在,说明理由.
受日月引力的作用,海水会发生涨落,这种现象叫潮汐. 在通常情况下,船在海水涨潮时驶进航道,靠近码头,卸货后返回海洋.某港口水的深度是时间,单位:的函数,记作:,下表是该港口在某季每天水深的数据:经过长期观察的曲线可以近似地看做函数的图象.(Ⅰ)根据以上数据,求出函数的近似表达式;(Ⅱ)一般情况下,船舶航行时船底离海底的距离为以上时认为是安全的(船舶停靠时,船底只需不碰到海底即可),某船吃水深度(船底离水面的距离)为,如果该船想在同一天内安全进出港,问它至多能在港内停留多长时间(忽略进出港所需时间)?
已知数列满足:,(Ⅰ) 求证:数列是等差数列并求的通项公式;(Ⅱ) 设,求证:.
随着经济的发展,人们生活水平的提高,中学生的营养与健康问题越来越得到学校与家长的重视. 从学生体检评价报告单了解到某校3000名学生的体重发育评价情况,得右表:
已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15.(Ⅰ)求的值;(Ⅱ)若用分层抽样的方法,从这批学生中随机抽取60名,问应在肥胖学生中抽出多少名?(Ⅲ)已知,,求肥胖学生中男生不少于女生的概率.
已知函数(Ⅰ)若函数在其定义域上为单调函数,求的取值范围;(Ⅱ)若函数的图像在处的切线的斜率为0,,已知求证:(Ⅲ)在(2)的条件下,试比较与的大小,并说明理由.
在直角坐标平面内,y轴右侧的一动点P到点的距离比它到轴的距离大(Ⅰ)求动点的轨迹的方程;(Ⅱ)设为曲线上的一个动点,点,在轴上,若为圆的外切三角形,求面积的最小值.