列{an}的前n项和为Sn,已知Sn+1=pSn+q(p,q为常数,n∈N*),a1=2,a2=1,a3=q-3p.(1)求p,q的值;(2)求数列{an}的通项公式;(3)是否存在正整数m,n,使成立?若存在,求出所有符合条件的有序实数对(m,n);若不存在,说明理由.
(本小题满分12分)如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F为CD的中点.(Ⅰ)求证:AF⊥平面CDE;(Ⅱ)求面ACD和面BCE所成锐二面角的大小.
(本小题满分12分)已知函数(e为自然对数的底数).(Ⅰ)当时,求函数的单调区间;(Ⅱ)若对于任意,不等式恒成立,求实数t的取值范围.
(本小题满分12分)已知函数的图象过点. (Ⅰ)求的值;(Ⅱ)在△中,角,,的对边分别是,,.若,求的取值范围.
在直角坐标系中,点,点为抛物线的焦点,线段恰被抛物线平分.(Ⅰ)求的值;(Ⅱ)过点作直线交抛物线于两点,设直线、、的斜率分别为、、,问能否成公差不为零的等差数列?若能,求直线的方程;若不能,请说明理由.
已知函数,设曲线在与轴交点处的切线为,为的导函数,满足.(1)求的单调区间.(2)设,,求函数在上的最大值;