列{an}的前n项和为Sn,已知Sn+1=pSn+q(p,q为常数,n∈N*),a1=2,a2=1,a3=q-3p.(1)求p,q的值;(2)求数列{an}的通项公式;(3)是否存在正整数m,n,使成立?若存在,求出所有符合条件的有序实数对(m,n);若不存在,说明理由.
(本小题满分12分)已知实数,设P:函数在R上单调递减,Q:关于的一元二次方程有两个不相等的实数根, 如果命题“”为真命题,命题“”为假命题,求实数的取值范围.
设函数(1)若上的最大值(2)若在区间[1,2]上为减函数,求a的取值范围。(3)若直线为函数的图象的一条切线,求a的值。
设直线与抛物线交于不同两点A、B,F为抛物线的焦点。(1)求的重心G的轨迹方程;(2)如果的外接圆的方程。
已知数列满足:已知存在常数p,q使数列为等比数列。(1)求常数p、q及的通项公式;(2)解方程(3)求
(本小题满分12分)已知矩形ABCD所在平面,PA=AD=,E为线段PD上一点。(1)当E为PD的中点时,求证:(2)是否存在E使二面角E—AC—D为30°?若存在,求,若不存在,说明理由。