列{an}的前n项和为Sn,已知Sn+1=pSn+q(p,q为常数,n∈N*),a1=2,a2=1,a3=q-3p.(1)求p,q的值;(2)求数列{an}的通项公式;(3)是否存在正整数m,n,使成立?若存在,求出所有符合条件的有序实数对(m,n);若不存在,说明理由.
(本小题满分12分)某产品按行业生产标准分成个等级,等级系数依次为,其中为标准,为标准,产品的等级系数越大表明产品的质量越好. 已知某厂执行标准生产该产品,且该厂的产品都符合相应的执行标准.从该厂生产的产品中随机抽取件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 38 3 4 3 4 4 7 5 6 7该行业规定产品的等级系数的为一等品,等级系数的为二等品,等级系数的为三等品.(1)试分别估计该厂生产的产品的一等品率、二等品率和三等品率;(2)从样本的一等品中随机抽取2件,求所抽得2件产品等级系数都是8的概率.
(本小题满分12分)已知数列满足,.⑴求证:数列是等比数列,并写出数列的通项公式;⑵若数列满足,求的值.
(本小题满分12分)已知函数.(1)求函数的最小正周期和值域;(2)若为第二象限角,且,求的值.
.(本小题满分15分)已知函数(Ⅰ)若对任意的恒成立,求实数的取值范围;(Ⅱ)当时,设函数,若,求证
(本小题满分15分).已知、分别为椭圆:的上、下焦点,其中也是抛物线:的焦点,点是与在第二象限的交点,且。(Ⅰ)求椭圆的方程;(Ⅱ)已知点P(1,3)和圆:,过点P的动直线与圆相交于不同的两点A,B,在线段AB取一点Q,满足:,(且)。求证:点Q总在某定直线上。