列{an}的前n项和为Sn,已知Sn+1=pSn+q(p,q为常数,n∈N*),a1=2,a2=1,a3=q-3p.(1)求p,q的值;(2)求数列{an}的通项公式;(3)是否存在正整数m,n,使成立?若存在,求出所有符合条件的有序实数对(m,n);若不存在,说明理由.
设,满足. (1) 求函数的单调递增区间;(2)设三内角所对边分别为且,求在 上的值域.
已知双曲线的渐近线方程为,左焦点为F,过的直线为,原点到直线的距离是(1)求双曲线的方程; (2)已知直线交双曲线于不同的两点C,D,问是否存在实数,使得以CD为直径的圆经过双曲线的左焦点F。若存在,求出m的值;若不存在,请说明理由。
已知与抛物线交于A、B两点,(1)若|AB|="10," 求实数的值。(2)若, 求实数的值。
已知双曲线的离心率为,右准线方程为。(Ⅰ)求双曲线C的方程;(Ⅱ)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆上,求实数m的值。
如图,四棱锥PABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD。(1)证明:PA⊥BD;(2)设PD=AD,求二面角A-PB-C的余弦值.