列{an}的前n项和为Sn,已知Sn+1=pSn+q(p,q为常数,n∈N*),a1=2,a2=1,a3=q-3p.(1)求p,q的值;(2)求数列{an}的通项公式;(3)是否存在正整数m,n,使成立?若存在,求出所有符合条件的有序实数对(m,n);若不存在,说明理由.
在中,角所对的边分别为,且满足.求角的大小;求的最大值,并求取得最大值时角的大小.
已知向量,,其中为坐标原点.(Ⅰ)若且,求向量与的夹角;(Ⅱ)若不等式对任意实数都成立,求实数的取值范围.
在△中,角A、B、C所对的边分别是 a,b,c且a="2," (Ⅰ)b="3," 求的值.(Ⅱ)若△的面积=3,求b,c的值.
已知函数为实常数). (I)当时,求函数在上的最小值; (Ⅱ)若方程在区间上有解,求实数的取值范围; (Ⅲ)证明: (参考数据:)
设(1)请写出的表达式(不需证明);(2)求的极值(3)设的最大值为,的最小值为,求的最小值.