列{an}的前n项和为Sn,已知Sn+1=pSn+q(p,q为常数,n∈N*),a1=2,a2=1,a3=q-3p.(1)求p,q的值;(2)求数列{an}的通项公式;(3)是否存在正整数m,n,使成立?若存在,求出所有符合条件的有序实数对(m,n);若不存在,说明理由.
A,B,C为△ABC的三内角,其对边分别为a, b, c,若.(1)求;(2)若,,求△ABC的面积.
(本小题满分14分)已知椭圆的两个焦点的坐标分别为,,并且经过点(,),M、N为椭圆上关于轴对称的不同两点.(1)求椭圆的标准方程;(2)若,试求点的坐标;(3)若为轴上两点,且,试判断直线的交点是否在椭圆上,并证明你的结论.
(本小题满分14分) 如图6,已知点是圆心为半径为1的半圆弧上从点数起的第一个三等分点,是直径,,直线平面. (1)证明:; (2)在上是否存在一点,使得∥平面,若存在,请确定点的位置,并证明之;若不存在,请说明理由; (3)求点到平面的距离.
(本小题满分14分)已知圆心在轴上的圆过点和.(1)求圆的方程;(2)求过点且与圆相切的直线方程;(3)已知线段的端点的坐标为,端点在圆上运动,求线段的中点N的轨迹.
(本小题满分13分)如图,三棱柱中,侧棱垂直底面,,,D是棱的中点.(1)证明:平面;(2)若,求三棱锥的体积.