列{an}的前n项和为Sn,已知Sn+1=pSn+q(p,q为常数,n∈N*),a1=2,a2=1,a3=q-3p.(1)求p,q的值;(2)求数列{an}的通项公式;(3)是否存在正整数m,n,使成立?若存在,求出所有符合条件的有序实数对(m,n);若不存在,说明理由.
季节性服装当季节即将来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售;10周后当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售.试建立价格P与周次t之间的函数关系式.若此服装每件进价Q与周次t之间的关系为Q=-0.125(t-8)2+12,t∈[0,16],t∈N*,试问该服装第几周每件销售利润L最大?
.若函数y= f(2x+1)的定义域为[ 1,2 ],求f (x)的定义域.已知函数f(x)的定义域为[-,],求函数g(x)=f(3x)+f()的定义域.
已知圆,直线.(1)证明直线与圆相交;(2)求直线被圆截得的弦长最小时,直线的方程.
如图所示,在正方体中,分别是的中点.(1)证明:;(2)求与所成的角;(3)证明:面面;
已f ()=,求f(x)的解析式.已知y=f(x)是一次函数,且有f [f(x)]=9x+8,求此一次函数的解析式.