角坐标系中,已知向量,又点(1)若且,求向量;(2)若向量与向量共线,当时,且取最大值为4时,求
阅读下面材料:根据两角和与差的正弦公式,有------①------②由①+② 得------③令 有代入③得 (Ⅰ)类比上述推证方法,根据两角和与差的余弦公式,证明:;(Ⅱ)若的三个内角满足,试判断的形状.(提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)
函数,已知是奇函数。(Ⅰ)求b,c的值;(Ⅱ)求g(x)的单调区间与极值。
如图,已知点D(0,-2),过点D作抛物线:的切线,切点A在第二象限。(1)求切点A的纵坐标;(2)若离心率为的椭圆恰好经过A点,设切线l交椭圆的另一点为B,若设切线,直线OA,OB的斜率为,,①试用斜率k表示②当取得最大值时求此时椭圆的方程。
已知函数.(为自然对数的底)(Ⅰ)求的最小值;(Ⅱ)是否存在常数使得对于任意的正数恒成立?若存在,求出的值;若不存在,说明理由.
已知椭圆的方程为它的一个焦点与抛物线的焦点重合,离心率过椭圆的右焦点F作与坐标轴不垂直的直线交椭圆于A、B两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)设点求直线的方程