角坐标系中,已知向量,又点(1)若且,求向量;(2)若向量与向量共线,当时,且取最大值为4时,求
函数f(x)=sin2x--.(1)若x∈[,],求函数f(x)的最值及对应的x的值.(2)若不等式[f(x)-m]2<1在x∈[,]上恒成立,求实数m的取值范围.
若向量m=(sinωx,0),n=(cosωx,-sinωx)(ω>0),在函数f(x)=m·(m+n)+t的图象中,对称中心到对称轴的最小距离为,且当x∈[0,]时,f(x)的最大值为1.(1)求函数f(x)的解析式.(2)求函数f(x)的单调递增区间.
已知函数f(x)=sinsin(+).(1)求函数f(x)在[-π,0]上的单调区间.(2)已知角α满足α∈(0,),2f(2α)+4f(-2α)=1,求f(α)的值.
已知f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期为2,且当x=时,f(x)的最大值为2.(1)求f(x)的解析式.(2)在闭区间[,]上是否存在f(x)的对称轴?如果存在求出其对称轴.若不存在,请说明理由.
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<,x∈R)的图象的一部分如图所示.(1)求函数f(x)的解析式.(2)当x∈[-6,-]时,求函数y=f(x)+f(x+2)的最大值与最小值及相应的x的值.