角坐标系中,已知向量,又点(1)若且,求向量;(2)若向量与向量共线,当时,且取最大值为4时,求
设为正方形的中心,四边形是平行四边形,且平面平面,若.(1)求证:平面.(2)线段上是否存在一点,使平面?若存在,求的值;若不存在,请说明理由.
某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:后得到如下图的频率分布直方图.(1)若该校高一年级共有学生人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(2)若从数学成绩在与两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率。
在中,分别是角的对边,,.(1)求的值;(2)若,求边的长.
已知抛物线()上一点到其准线的距离为.(Ⅰ)求与的值;(Ⅱ)设抛物线上动点的横坐标为(),过点的直线交于另一点,交轴于点(直线的斜率记作).过点作的垂线交于另一点.若恰好是的切线,问是否为定值?若是,求出该定值;若不是,说明理由.
已知向量函数(Ⅰ)求的单调增区间;(Ⅱ)若时,的最大值为4,求的值.