如图, M - 2 , 0 和 N 2 , 0 是平面上的两点,动点 p 满足: PM - PN = 2 .
(Ⅰ)求点 p 的轨迹方程;
(Ⅱ)设 d 为点 p 到直线 l : x = 1 2 的距离,若 PM = 2 PN 2 ,求 PM d 的值.
解关于的不等式.
设函数. (1)当时,求函数的单调区间; (2)若当时,求a的取值范围.
用数学归纳法证明:
已知函数 (1)当a=2时,求曲线在点处的切线方程; (2)求函数的极值.
已知曲线的极坐标方程是,以极点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位. (1)写出曲线的普通方程,并说明它表示什么曲线; (2)过点作倾斜角为的直线与曲线相交于两点,求线段的长度和的值.