设各项均为正数的数列 a n 满足 a 1 = 2 , a n = a n + 1 3 2 a n + 2 ( n ∈ N * ) .
(Ⅰ)若 a 2 = 1 4 , 求 a 3 , a 4 ,并猜想 a 2008 的值(不需证明);
(Ⅱ)若 2 2 ≤ a 1 a 2 … … a n ≺ 4 对 n ≥ 2 恒成立,求 a 2 的值.
求函数的值域
(12分)已知全集U=R,集合,
已知:函数对一切实数都有成立,且. (1)求的值。 (2)求的解析式。 (3)已知,设P:当时,不等式恒成立;Q:当时,是单调函数。如果满足P成立的的集合记为,满足Q成立的的集合记为,求∩(为全集)。
已知函数是定义在上的奇函数,且在定义域上是减函数, (1)求函数定义域;(2)若,求的取值范围.
已知函数. (1)用定义证明是偶函数; (2)用定义证明在上是减函数; (3)作出函数的图像,并写出函数当时的最大值与最小值.