甲有大小相同的两张卡片,标有数字2、3;乙有大小相同的卡片四张,分别标有1、2、3、4.(1)求乙随机抽取的两张卡片的数字之和为奇数的概率;(2)甲、乙分别取出一张卡,比较数字,数字大者获胜,求乙获胜的概率.
为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用为C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0x10),若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。 (1)求k的值及f(x)的表达式; (2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
已知数列,计算,猜想的表达式,并用数学归纳法证明猜想的正确性
设. (1)求函数的单调区间; (2)若当时恒成立,求的取值范围。
已知函数在轴上的截距为1,且曲线上一点处的切线斜率为.(1)曲线在P点处的切线方程;(2)求函数的极大值和极小值
(本题14分) 已知函数R). (1)若曲线在点处的切线与直线平行,求的值; (2)在(1)条件下,求函数的单调区间和极值; (3)当,且时,证明: