甲有大小相同的两张卡片,标有数字2、3;乙有大小相同的卡片四张,分别标有1、2、3、4.(1)求乙随机抽取的两张卡片的数字之和为奇数的概率;(2)甲、乙分别取出一张卡,比较数字,数字大者获胜,求乙获胜的概率.
(本小题满分12分)已知数列是等比数列,,且是的等差中项.(Ⅰ) 求数列的通项公式;(Ⅱ)若,求数列的前n项和.
(本小题满分10分)在中,(Ⅰ)求的值 ; (Ⅱ)求的值。
已知函数.(Ⅰ)若曲线在和处的切线互相平行,求的值;(Ⅱ)求的单调区间;(Ⅲ)设,若对任意,均存在,使得,求的取值范围.
在平面直角坐标系中,点与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。
已知抛物线:的焦点为,、是抛物线上异于坐标原点的不同两点,抛物线在点、处的切线分别为、,且,与相交于点. (1) 求点的纵坐标; (2) 证明:、、三点共线;