在平面直角坐标系中,点与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。
(本小题满分12分) 已知函数. (1)若函数在(,1)上单调递减,在(1,+∞)上单调递增,求实数a的值; (2)是否存在正整数a,使得在(,)上既不是单调递增函数也不是单调递减函数?若存在,试求出a的值,若不存在,请说明理由.
(本小题满分12分已知的内角、、的对边分别为、、,,且 (1)求角; (2)若向量与共线,求、的值.
(本小题满分12分) 已知,设= (1).求的最小正周期和单调递减区间; (2)设关于的方程=在有两个不相等的实数根,求的取值范围.
(10分) 测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与.现测得,并在点测得塔顶的仰角为,求塔高。
设且. (I)当时,求实数的取值范围; (II)当时,求的最小值.