在平面直角坐标系中,点与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。
已知,. (1)求及; (2)求的值.
已知二次函数. (1)若,试判断函数零点个数. (2)若对且,,证明方程必有一个实数根属于. (3)是否存在,使同时满足以下条件①当时,函数有最小值0;②对任意实数x,都有.若存在,求出的值,若不存在,请说明理由.
已知圆:,直线过定点. (1)若直线与圆相切,切点为,求线段的长度; (2)若与圆相交于两点,线段的中点为,又与:的交点为,判断•是否为定值,若是,则求出定值;若不是,请说明理由.
如图,正方形的边长为1,正方形所在平面与平面互相垂直,是的中点. (1)求证:平面; (2)求证:; (3)求三棱锥的体积.
已知圆C经过点,且圆心在直线上. (1)求圆的方程; (2)过点的直线截圆所得弦长为,求直线的方程.