在直角坐标系xOy中,已知点P ,曲线C的参数方程为(φ为参数)。以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为。(1)判断点P与直线l的位置关系,说明理由;(2)设直线l与直线C的两个交点为A、B,求的值。
二次函数满足且.(1)求的解析式;(2)求在区间上的最大值与最小值.
已知函数.(1)求证:在上是单调递增函数(用定义证明);(2)若在上的值域是,求的值.
若集合和.(1)当时,求集合;(2)当时,求实数的取值范围.
已知椭圆:的离心率,原点到过点,的直线的距离是.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线与两定直线和分别交于两点.若直线总与椭圆有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过两点.(Ⅰ)求椭圆的方程;(Ⅱ)若平行于的直线交椭圆于两个不同点,直线与的斜率分别为,试问:是否为定值?若是,求出此定值;若不是,说明理由.