已知函数.(1)求函数的最小正周期;(2)求函数在区间上的函数值的取值范围.
袋子中有相同大小的红球3个及白球4个,现从中随机取球。 (1)取球3次,每次取后放回,求取到红球至少2次的概率; (2)现从袋子中逐个不放回的取球,若取到红球则继续取球,取到白球则停止取球,求取球次数的分布列与均值。
已知函数 (1)将的解析基本功化成的形式,并求函数图象离y轴最近的对称轴的方程; (2)求函数内的值域
:已知点列满足:,其中,又已知,. (1)若,求的表达式; (2)已知点B,记,且成立,试求a的取值范围; (3)设(2)中的数列的前n项和为,试求:。
:某商店投入38万元经销某种纪念品,经销时间共60天,为了获得更多的利润,商店将每天获得的利润投入到次日的经营中,市场调研表明,该商店在经销这一产品期间第天的利润(单位:万元,),记第天的利润率,例如 (1)求的值; (2)求第天的利润率; (3)该商店在经销此纪念品期间,哪一天的利润率最大?并求该天的利润率.
:如图,在平面直角坐标系xoy中,抛物线y=x2-x-10与x轴的交点为A,与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动.线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒) (1)求A,B,C三点的坐标和抛物线的顶点坐标; (2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程; (3)当t∈(0,)时,△PQF的面积是否总为定值?若是,求出此定值;若不是,请说明理由; (4)当t为何值时,△PQF为等腰三角形?请写出解答过程.