如图,在Rt⊿ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.(1)用含y的代数式表示AE; (2)求y与x之间的函数关系式,并求出x的取值范围;(3)设四边形DECF的面积为S,求S与x之间的函数关系,并求出S的最大值.
据2010年5月8日《杭州日报》报道:今年“五一”黄金周期间,我市实现旅游收入再创历史新高,旅游消费呈现多样化,各项消费所占的比例如图秘所示,其中住宿消费为3438.24万元.求我市今年“五一”黄金周期间旅游消费共多少亿元?旅游消费中各项消费的中位数是多少万元?对于“五一”黄金周期间的旅游消费,如果我市2012年要达到3.42亿元的目标,那么,2010年到2012年的平均增长率是多少?2010年杭州市“五一”黄金周旅游各项消费分布统计图
如图,已知抛物线经过点,抛物线的顶点为,过作射线.过顶点平行于轴的直线交射线于点,在轴正半轴上,连结.求该抛物线的解析式;动点从点出发,以每秒1个长度单位的速度沿射线运动,设点运动的时间为.问当为何值时,四边形分别为平行四边形?直角梯形?等腰梯形?若,动点和动点分别从点和点同时出发,分别以每秒1个长度单位和2个长度单位的速度沿和运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为,连接,当为何值时,四边形的面积最小?并求出最小值及此时的长.
萧山素以“萝卜干之乡”著称.某乡组织20辆汽车装运A、B、C三种不同包装的萝卜干42吨到外地销售.按规定每辆车只装同一种萝卜干,且必须装满,每种萝卜干不少于2车.设有x辆车装运A种萝卜干,用y辆车装运B种萝卜干,根据下表提供的信息,求y与x之间的函数关系,并求x的取值范围;设此次外销活动的利润为W(百元),求W与x的函数关系式以及最大利润,并安排相应的车辆分配方案.
如图22-1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.如图22-2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;若三角尺GEF旋转到如图22-3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.
问题背景:在中,、、三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即三个顶点都在小正方形的顶点处),如图所示.这样不需求的高,而借用网格就能计算出它的面积.请你将的面积直接填写在横线上.__________________思维拓展:我们把上述求面积的方法叫做构图法.若三边的长分别为、、(),请利用图的正方形网格(每个小正方形的边长为)画出相应的,并求出它的面积.探索创新:若三边的长分别为、、(,且),试运用构图法求出这三角形的面积.