等差数列{}足:,,其中为数列{}前n项和.(1)求数列{}通项公式;(2)若,且,,成等比数列,求k值.
若,其中. (1)当时,求函数在区间上的最大值; (2)当时,若,恒成立,求的取值范围.
某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过小时收费元,超过小时的部分每小时收费元(不足小时的部分按小时计算).现有甲、乙二人在该商区临时停车,两人停车都不超过小时. (1)若甲停车小时以上且不超过小时的概率为,停车付费多于元的概率为,求甲停车付费恰为元的概率; (2)若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为元的概率.
已知在正项数列{an}中,Sn表示前n项和且2=an+1,数列的前n项和, (1)求; (2)是否存在最大的整数t,使得对任意的正整数n均有总成立?若存在,求出t;若不存在,请说明理由,
已知函数. (1)设,求的值域; (2)在△ABC中,角,,所对的边分别为,,.已知c=1,,且△ABC的面积为,求边a和b的长.
已知等比数列的前项和为,成等差数列. (1)求数列的通项公式; (2)数列是首项为-6,公差为2的等差数列,求数列的前项和.