已知向量,向量,函数.(1)求的最小正周期;(2)已知分别为内角的对边,为锐角,,且恰是在上的最大值,求和.
已知是一元二次方程的两根,且, (1)求的值;(2)求的值.
已知(1)化简;(2)若且求的值;(3)求满足的的取值集合.
设函数,且,.(1)求的值;(2)当时,求的最大值.
(本小题满分13分)已知椭圆的焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率.(1)求椭圆的标准方程;(2)过椭圆的右焦点作与坐标轴不垂直的直线,交椭圆于、两点,设点是线段上的一个动点,且,求的取值范围;(3)设点是点关于轴的对称点,在轴上是否存在一个定点,使得、、三点共线?若存在,求出定点的坐标,若不存在,请说明理由.
(本小题满分12分)函数(为常数)的图象过点.(1)求的值;(2)函数在区间上有意义,求实数的取值范围;(3)讨论关于的方程(为常数)的正根的个数.