已知圆心在第二象限内,半径为的圆与轴交于和两点.(1)求圆的方程;(2)求圆的过点A(1,6)的切线方程;(3)已知点N(9,2)在(2)中的切线上,过点A作N的垂线,垂足为M,点H为线段AM上异于两个端点的动点,以点H为中点的弦与圆交于点B,C,过B,C两点分别作圆的切线,两切线交于点P,求直线的斜率与直线PN的斜率之积.
编号为的16名篮球运动员在某次训练比赛中的得
已知 O 为坐标原点, F 为椭圆 C : x 2 + y 2 2 = 1 在 y 轴正半轴上的焦点,过 F 且斜率为 - 2 的直线 l 与 C 交与 A , B 两点,点 P 满足 O A ⇀ + O B ⇀ + O P ⇀ = 0 ⇀ .
(1)证明:点 P 在 C 上; (2)设点 P 关于点 O 的对称点为 Q ,证明: A , P , B , Q 四点在同一圆上.
已知函数 f ( x ) = x 3 + 3 a x 2 + ( 3 - 6 a ) x + 12 a - 4 ( a ∈ R ) .
(1)证明:曲线 y = f ( x ) 在 x = 0 处的切线过点 ( 2 , 2 ) ; (2)若 f ( x ) 在 x = x 0 处取得最小值, x 0 ∈ ( 1 , 3 ) ,求 a 的取值范围.