两城相距,在两地之间距城处地建一核电站给两城供电.为保证城市安全,核电站距城市距离不得少于.已知供电费用(元)与供电距离()的平方和供电量(亿度)之积成正比,比例系数,若城供电量为亿度/月,城为亿度/月.(Ⅰ)把月供电总费用表示成的函数,并求定义域;(Ⅱ)核电站建在距城多远,才能使供电费用最小,最小费用是多少?
(本小题满分12分)已知的三个内角A、B、C所对的边分别为,向量,且 .(1)求角A的大小;(2)若,试判断取得最大值时形状.
如图,已知椭圆上两定点,直线与椭圆相交于A,B两点(异于P,Q两点)(1)求证:为定值;(2)当时,求A、P、B、Q四点围成的四边形面积的最大值。
已知函数.(1)当时,求函数的单调递增区间;(2)是否存在,使得对任意的,都有,若存在,求的范围;若不存在,请说明理由.
设数列的前n项和为,且对任意正整数n都成立,其中为常数,且,(1)求证:是等比数列;(2)设数列的公比,数列满足:,求数列的前项和。
(本小题满分12分)如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.(1)求证:DC平面ABC;(2)设,求三棱锥A-BFE的体积.