如图,在直三棱柱中,,分别是的中点,且. (1)求证:;(2)求证:平面平面.
某校从参加高三年级理科综合物理考试的学生中随机抽出名学生,将其数学成绩(均为整数)分成六段,…后得到如下部分频率分布直方图.观察图形的信息,回答下列问题: (Ⅰ)求分数在内的频率,并补全这个频率分布直方图; (Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的 平均分; (Ⅲ)若从名学生中随机抽取人,抽到的学生成绩在记分,在记分, 在记分,用表示抽取结束后的总记分,求的分布列和数学期望.
已知向量(),向量,, 且. (Ⅰ)求向量; (Ⅱ)若,,求.
已知函数. (Ⅰ)若曲线在点处的切线与直线垂直,求函数的单调区间; (Ⅱ)若对于都有成立,试求的取值范围; (Ⅲ)记.当时,函数在区间上有两个零点,求实数的取值范围.
已知数列{an}中,a1=1,a2=3且2an+1=an+2+an(n∈N*).数列{bn}的前n项和为Sn,其中b1=-,bn+1=-Sn(n∈N*). (1)求数列{an}和{bn}的通项公式; (2)若Tn=++…+,求Tn的表达式.
已知椭圆的的右顶点为A,离心率,过左焦点作直线与椭圆交于点P,Q,直线AP,AQ分别与直线交于点. (Ⅰ)求椭圆的方程; (Ⅱ)证明以线段为直径的圆经过焦点.