设定义域为的函数(Ⅰ)在平面直角坐标系内作出函数的图象,并指出的单调区间(不需证明);(Ⅱ)若方程有两个解,求出的取值范围(只需简单说明,不需严格证明).(Ⅲ)设定义为的函数为奇函数,且当时,求的解析式.
(本小题满分12分)已知数列的前项和为,且 (1)求数列的通项公式; (2)记数列的前项和为,若对任意的,恒成立,求实数的取值范围.
已知 (1)证明: (2)若在恒成立,求的最小值. (3)证明:图像恒在直线的上方.
(本题满分14分) 己知函数(其中)的最大值为,直线是图象的任意两条对称轴,且的最小值为. (1)求函数的单调增区间; (2)若,求的值; (3)对,在区间上有且只有个零点,请直接写出满足条件的所有的值并把上述结论推广到一般情况.(不要求证明)
中国正在成为汽车生产大国,汽车保有量大增,交通拥堵日趋严重.某市有关部门进行了调研,相关数据显示,从上午点到中午点,车辆通过该市某一路段的用时(分钟)与车辆进入该路段的时刻之间关系可近似地用如下函数给出:, 求从上午点到中午点,车辆通过该路段用时最多的时刻.
在中, (1)求的大小; (2)若,且,求边的取值范围.