(本小题满分10分)如果有穷数列(为正整数)满足条件,,…,,即(),我们称其为“对称数列”. 例如,数列与数列都是“对称数列”. (1)设是7项的“对称数列”,其中是等差数列,且,.依次写出的每一项;(2)设是项的“对称数列”,其中是首项为,公比为的等比数列,求各项的和;(3)设是项的“对称数列”,其中是首项为,公差为的等差数列.求前项的和.
在△ABC中,角A,B,C的对边分别为,且A,B,C成等差数列。 (1)若,,求△ABC的面积; (2)若成等比数列,试判断△ABC的形状。
若不等式组的解集中所含的整数解只有-2,求k取值范围
(本小题满分15分)如图,已知抛物线上点到焦点的距离为3,直线交抛物线于两点,且满足。圆是以为圆心,为直径的圆. (1)求抛物线和圆的方程; (2)设点为圆上的任意一动点,求当动点到直线的距离最大时的直线方程.
(本小题满分15分)已知函数是定义在上的偶函数,,其中均为常数. (1)求实数的值; (2)试讨论函数的奇偶性; (3)若,求函数的最小值.
(本小题满分14分))如图,在三棱柱中,⊥底面,且△为正三角形,,为的中点. (1)求证:直线∥平面; (2)求证:平面⊥平面; (3)求三棱锥的体积.