如图所示,已知ABCD是正方形,PD⊥平面ABCD,PD=AD=2.(1)求异面直线PC与BD所成的角;(2)在线段PB上是否存在一点E,使PC⊥平面ADE?若存在,确定E点的位置;若不存在,说明理由.
(本小题满分12分)已知函数f(x)=. (1)若f(x)在上是增函数,求实数a的取值范围; (2)若x=3是f(x)的极值点,求f(x)在上的最小值和最大值。
(本小题满分12分)如图,在正三棱柱ABC-A1B1C1中,AB=4,AA1, 点D是BC的中点,点E在AC上,且DE⊥A1E . (1)证明:平面A1DE⊥平面ACC1A1; (2)求直线AD和平面A1DE所成角的正弦值。
(本小题满分12分)已知f(x)=奇函数,且。 (1)求实数p , q的值。 (2)判断函数f(x)在上的单调性,并证明。
(本小题满分12分)已知集合,,如果,则这样的实数x是否存在?若存在,求出x;若不存在,说明理由。
已知数列满足,. (1)计算; (2)求数列的通项公式; (3)已知,设是数列的前项积,若对恒成立,求实数m的范围。