(已知抛物线,过定点的直线交抛物线于A、B两点.(Ⅰ)分别过A、B作抛物线的两条切线,A、B为切点,求证:这两条切线的交点在定直线上.(Ⅱ)当时,在抛物线上存在不同的两点P、Q关于直线对称,弦长|PQ|中是否存在最大值?若存在,求其最大值(用表示),若不存在,请说明理由.
设数列为等差数列,且a3=5,a5=9;数列的前n项和为Sn,且Sn+bn=2. (1)求数列,的通项公式;(2)若为数列的前n项和,求.
从集合中任取三个元素构成三元有序数组,规定 .(1)从所有的三元有序数组中任选一个,求它的所有元素之和等于10的概率(2)定义三元有序数组的“项标距离”为(其中),从所有的三元有序数组中任选一个,求它的“项标距离”d为偶数的概率.
设函数f (x) =.(1)求f(x)的最小正周期及其图象的对称轴方程; (2)将函数f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求g (x)在区间上的值域.
设对于任意实数x,不等式|x+7|+|x-1|≥m恒成立.(1)求m的取值范围;(2)当m取最大值时,解关于x的不等式|x-3|-2x≤2m-12.
已知等差数列{an}的通项公式为,从数列{an}中依次取出a1,a2,a4,a8,…,,…,构成一个新的数列{bn},求{bn}的前n项和.