如图所示,在三棱锥中,,平面⊥平面, .(1)求证:平面;(2)求直线与平面所成角的正弦值.
已知: (1)若 (2)若的最大值和最小值和为3,求的值.
在直三棱柱中,
(1)求证:
把圆周分成四等份,A是其中一个分点,动点P在四个分点上按逆时针方向前进。现在投掷一个质地均匀的正四面体,它的四个面上分别写有1、2、3、4四个数字。P从A点出发,按照正四面体底面上数字前进几个分点,转一周之前连续投掷. (1)求点P恰好返回A点的概率; (2)在点P转一周恰能返回A点的所有结果中,用随即变量表示点P能返回A点的投掷次数,求的分数列和期望.
定义在上的函为常数)在x=-1处取得极值,且的图像在数处的切线平行与直线. (1)求函数的解析式及极值; (2)设,求不等式的解集; (3)对任意
已知二次函数同时满足:⑴不等式的解集有且只有一个元素;⑵在定义域内存在,使得不等式成立。设数列的前 (1)求数列的通项公式; (2)设 (3)设各项均不为零的数列中,所有满足的正整数i的个数称为这个数列的变号数.另