设A、B分别是直线和上的两个动点,并且,动点P满足,记动点P的轨迹为C,求轨迹C的方程.
如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点, (Ⅰ)求证:FH∥平面EDB; (Ⅱ)求证:AC⊥平面EDB; (Ⅲ)求四面体B—DEF的体积.
如图,已知四棱锥的底面为等腰梯形,∥,,垂足为,是四棱锥的高。 (Ⅰ)证明:平面平面; (Ⅱ)若,60°,求四棱锥的体积。
设,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B两点,且+= (Ⅰ)求;(Ⅱ)若直线的斜率为1,求b的值。
已知直线的参数方程:(为参数)和圆的极坐标方程:. (Ⅰ)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程; (Ⅱ)判断直线和圆的位置关系.
(1)(满分7分) 选修4一2:矩阵与变换 二阶矩阵对应的变换将点与分别变换成点与. (Ⅰ)求矩阵; (Ⅱ)设直线在矩阵对应变换的作用下得到直线: ,求的方程.