已知一个几何体的三视图如图所示.(Ⅰ)求此几何体的表面积;(Ⅱ)在如图的正视图中,如果点为所在线段中点,点为顶点,求在几何体侧面上从点到点的最短路径的长.
如图,四棱锥中,底面是菱形,,,是的中点,点在侧棱上. (1)求证:⊥平面; (2)若是的中点,求证://平面; (3)若,试求的值.
在中,角、、的对边分别为、、.设向量,. (1)若,,求角;(2)若,,求的值.
在平面直角坐标系中,已知点,是动点,且的三边所在直线的斜率满足. (1)求点的轨迹的方程; (2)若是轨迹上异于点的一个点,且,直线与交于点,问:是否存在点,使得和的面积满足?若存在,求出点的坐标;若不存在,说明理由.
如图,平面平面,是等腰直角三角形,,四边形是直角梯形,∥AE,,,分别为的中点. (1)求异面直线与所成角的大小; (2)求直线和平面所成角的正弦值.
已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(是参数).若直线与圆相切,求实数的值.