甲、乙两名运动员参加“选拔测试赛”,在相同条件下,两人5次测试的成绩(单位:分)记录如下:甲 86 77 92 72 78乙 78 82 88 82 95(1)用茎叶图表示这两组数据;.(2)现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算);(3)若将频率视为概率,对运动员甲在今后三次测试成绩进行预测,记这三次成绩高于分的次数为,求的分布列和数学期望..
设是一个自然数,是的各位数字的平方和,定义数列:是自然数,(,).(1)求,;(2)若,求证:;(3)求证:存在,使得.
已知椭圆的一个焦点为,且离心率为. (1)求椭圆方程;(2)过点且斜率为的直线与椭圆交于两点,点关于轴的对称点为,求△面积的最大值.
已知,函数,.(Ⅰ)若曲线与曲线在它们的交点处的切线互相垂直,求,的值;(Ⅱ)设,若对任意的,且,都有,求的取值范围.
如图,在三棱锥中,,,°,平面平面,,分别为,中点.(1)求证:∥平面;(2)求证:;(3)求三棱锥的体积.
汽车的碳排放量比较大,某地规定,从2014年开始,将对二氧化碳排放量超过130g/km的轻型汽车进行惩罚性征税.检测单位对甲、乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:g/km).经测算得乙品牌轻型汽车二氧化碳排放量的平均值为.(1)从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过的概率是多少?(2)求表中的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性.