某高校在2013年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[160,165),第2组[165,170),第3组[170,175),第4组[175,180),第5组[180,185],得到的频率分布直方图如图所示.(1)求第3,4,5组的频率; (2)为了了解最优秀学生的情况,该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,求第3,4,5组每组各抽取多少名学生进入第二轮面试.
如图,在四棱锥平面ABCD,,E为PD的中点,F在AD上且. (1)求证:CE//平面PAB; (2)若PA=2AB=2,求四面体PACE的体积.
已知数列中,为其前项和,且对任意,都有. (1)求数列的通项公式; (2)设数列满足,求数列的前项和.
已知函数的周期为. (1)求的解析式; (2)在中,角A、B、C的对边分别是,,求的面积.
已知椭圆的离心率,点A为椭圆上一点,. (1)求椭圆C的方程; (2)设动直线与椭圆C有且只有一个公共点P,且与直线相交于点Q.问:在轴上是否存在定点M,使得以PQ为直径的圆恒过定点M?若存在,求出点M的坐标;若不存在,说明理由.
设. (1)求函数的图象在点处的切线方程; (2)求的单调区间; (3)当时,求实数的取值范围,使得对任意恒成立.