(本小题满分12分)已知直线与椭圆相交于、两点.(1)若椭圆的离心率为,焦距为,求线段的长;(2)若向量与向量互相垂直(其中为坐标原点),当椭圆的离心率时,求椭圆长轴长的最大值.
(本小题满分12分)已知{}是首项为,公差为的等差数列,是其前项的和,且,. (Ⅰ)求数列{}的通项及; (Ⅱ)设是首项为1,公比为3的等比数列.求数列{}的通项公式及其前项和.
已知数列中中, (1)求证:数列是等比数列,并求数列的通项公式 (2)若数列满足,数列的前项和为,若不等式对一切恒成立,求的取值范围.
如图,三棱柱中,侧棱平面,为等腰直角三角形,,且分别是的中点. (Ⅰ)求证:平面; (Ⅱ)求锐二面角的余弦值.
正项数列的前n项和为,且. (Ⅰ)证明数列为等差数列并求其通项公式; (Ⅱ)设,数列的前项和为,证明:
解关于的不等式