(本小题满分12分)已知直线与椭圆相交于、两点.(1)若椭圆的离心率为,焦距为,求线段的长;(2)若向量与向量互相垂直(其中为坐标原点),当椭圆的离心率时,求椭圆长轴长的最大值.
已知函数,函数. (1)求函数与的解析式,并求出,的定义域; (2)设,试求函数的最值.
如图所示,正方形与直角梯形所在平面互相垂直,,,. (1)求证:平面; (2)求证:平面; (3)求四面体的体积.
如图,在四棱锥中,底面为直角梯形,,,平面底面,为中点,是棱PC上的点,. (1)求证:平面平面; (2)若点是棱的中点,求证:平面.
已知直线L经过点,且直线L在x轴上的截距等于在y轴上的截距的2倍,求直线L的方程.
函数在上是减函数,求实数的取值范围.