(10分) 已知:如图,设P为椭圆上的任意一点,过点P作椭圆的切线,交准线m于点Z,此时FZ⊥FP,过点P作PZ的垂线交椭圆的长轴于点G,椭圆的离心率为e,求证:FG=e·FP
若两个椭圆的离心率相等,则称它们为“相似椭圆”.如图,在直角坐标系xOy中,已知椭圆C1:=1,A1,A2分别为椭圆C1的左、右顶点.椭圆C2以线段A1A2为短轴且与椭圆C1为“相似椭圆”. (1)求椭圆C2的方程;(2)设P为椭圆C2上异于A1,A2的任意一点,过P作PQ⊥x轴,垂足为Q,线段PQ交椭圆C1于点H.求证:H为△PA1A2的垂心.(垂心为三角形三条高的交点)
如图,某园林单位准备绿化一块直径为BC的半圆形空地,△ABC外的地方种草,△ABC的内接正方形PQRS为一水池,其余的地方种花,若BC=a,∠ABC=θ,设△ABC的面积为S1,正方形的PQRS面积为S2. (1)用a,θ表示S1和S2;(2)当a固定,θ变化时,求的最小值.
在等腰梯形ABCD中,AB∥CD,AB=BC=AD=2,CD=4,E为边DC的中点,如图1.将△ADE沿AE折起到△AEP位置,连PB、PC,点Q是棱AE的中点,点M在棱PC上,如图2.(1)若PA∥平面MQB,求PM∶MC;(2)若平面AEP⊥平面ABCE,点M是PC的中点,求三棱锥AMQB的体积.
已知△ABC中,角A,B,C的对边分别为a,b,c,且acos B=ccos B+bcos C.(1)求角B的大小;(2)设向量m=(cos A,cos 2A),n=(12,-5),求当m·n取最大值时,tan C的值.
设数列{bn}满足bn+2=-bn+1-bn(n∈N*),b2=2b1.(1)若b3=3,求b1的值;(2)求证数列{bnbn+1bn+2+n}是等差数列;(3)设数列{Tn}满足:Tn+1=Tnbn+1(n∈N*),且T1=b1=-,若存在实数p,q,对任意n∈N*都有p≤T1+T2+T3+…+Tn<q成立,试求q-p的最小值.