数列的通项公式为,其前项和为.(1)求及的表达式;(2)若,求数列的前项和;(3)若,令,求的取值范围.
已知:圆过椭圆的两焦点,与椭圆有且仅有两个公共点:直线与圆相切 ,与椭圆相交于A,B两点记 (Ⅰ)求椭圆的方程; (Ⅱ)求的取值范围; (Ⅲ)求的面积S的取值范围.
已知函数f(x)=(m为常数0<m<1),且数列{f()}是首项为2,公差为2的等差数列. (1)=f(),当m=时,求数列{}的前n项和; (2)设=·,如果{}中的每一项恒小于它后面的项,求m的取值范围.
如图,在三棱柱中,△是边长为的等边三角形,平面,,分别是,的中点. (1)求证:∥平面; (2)若为上的动点,当与平面所成最大角的正切值为时,求平面与平面所成二面角(锐角)的余弦值.
某市直小学为了加强管理,对全校教职工实行新的临时事假制度:“每位教职工每月在正常的工作时间,临时有事,可请假至多三次,每次至多一小时”.现对该制度实施以来50名教职工请假的次数进行调查统计,结果如下表所示:
根据上表信息解答以下问题: (1)从该小学任选两名教职工,用表示这两人请假次数之和,记“函数在区间上有且只有一个零点”为事件,求事件发生的概率; (2)从该小学任选两名职工,用表示这两人请假次数之差的绝对值,求随机变量的分布列及数学期望.
设函数f(x)=sin(ωx+),其中ω>0,||<,若coscos-sinsin=0,且图象的一条对称轴离一个对称中心的最近距离是. (1)求函数f(x)的解析式; (2)若A,B,C是△ABC的三个内角,且f(A)=-1,求sinB+sinC的取值范围.