已知椭圆:的离心率为,一条准线.(1)求椭圆的方程;(2)设为坐标原点,是上的点,为椭圆的右焦点,过点作的垂线与以为直径的圆交于两点.①若=,求圆的方程;②若是上的动点,求证:点在定圆上,并求该定圆的方程.
已知函数的图像关于直线对称,当,且, 求的值.
已知数列的首项,前项和恒为正数,且当时,. (Ⅰ)求数列的通项公式; (Ⅱ)求证:.
已知点满足:(其中,又知. (Ⅰ)若,求的表达式; (Ⅱ)已知点,记,且对一切恒成立,试求的取值范围.
如图,F是抛物线的焦点,Q为准线与轴的交点,直线经过点Q. (Ⅰ)直线与抛物线有唯一公共点,求的方程; (Ⅱ)直线与抛物线交于A、B两点记FA、FB 的斜率分别为,.求证:为定值.
已知矩形ABCD中,AB=2AD=4,E为CD的中点,沿AE将三角形AED折起,使DB=, 如图,O,H分别为AE、AB中点. (Ⅰ)求证:直线OH//面BDE; (Ⅱ)求证:面ADE面ABCE;(Ⅲ)求二面角O-DH-E的余弦值.