数列{}是首项为23,公差为 -4的等差数列.(1)当时,求的取值范围.(2)求的最大值.
已知,是平面上的两个定点,动点满足.(1)求动点的轨迹方程;(2)已知圆方程为,过圆上任意一点作圆的切线,切线与(1)中的轨迹交于,两点,为坐标原点,设为的中点,求长度的取值范围.
已知数列,是其前项的且满足(1)求证:数列为等比数列;(2)记,求的表达式。
设函数,其中向量,,.(1)求的最小正周期与单调递减区间;(2)在△中,、、分别是角、、的对边,已知,,△的面积为,求的值.
已知圆C:。(1)求m的取值范围。(2)当m=4时,若圆C与直线交于M,N两点,且,求的值。
(本小题满分14分)已知椭圆()的左、右顶点分别为,,且,为椭圆上异于,的点,和的斜率之积为.(1)求椭圆的标准方程;(2)设为椭圆中心,,是椭圆上异于顶点的两个动点,求面积的最大值.