设二次函数满足条件:①;②函数的图像与直线相切.(1)求函数的解析式;(2)若不等式在时恒成立,求实数的取值范围.
(本小题满分12分)已知直线与抛物线相切于点P(2,1),且与轴交于点A,定点B的坐标为(2,0)。(I)若动点M满足,求点M的轨迹C;(II)若过点B的直线(斜率不等于零)与(I)中的轨迹C交于不同的两点E.F(E在B.F之间),试求与面积之比的取值范围。
(本小题满分12分)数列{an}的前n项和为Sn,且a1=a,Sn+1=2Sn+n+1,n∈N*(Ⅰ)求数列{an}的通项公式;(Ⅱ)当a=1时,若设数列{bn}的前n项和Tn,n∈N*,证明Tn<2。
(本小题满分12分)如图,在正三棱柱ABC—A1B1C1中,BB1=2,BC=2,D为B1C1的中点。(Ⅰ)证明:B1C⊥面A1BD;(Ⅱ)求二面角B—AC—B1的大小。
(本小题满分12分)某大学毕业生响应国家号召,到某村参加村委会主任应聘考核。考核依次分为笔试、面试.试用共三轮进行,规定只有通过前一轮考核才能进入下一轮考核,否则将被淘汰,三轮考核都通过才能被正式录用。设该大学毕业生通过三轮考核的概率分别为, 且各轮考核通过与否相互独立。(Ⅰ)求该大学毕业生未进入第三轮考核的概率;(Ⅱ)设该大学毕业生在应聘考核中考核次数为ξ,求ξ的数学期望和方差。
(本小题满分10分)已知角为的三个内角,其对边分别为,若向量,,,且.(1)若的面积,求bc的值.(2)求的取值范围.