如图,已知四棱锥。(1)若底面为菱形,,, 求证:;(2) 若底面为平行四边形,为的中点, 在上取点,过和点的平面与平面的交线为,求证:。
(本小题满分14分)已知函数.(Ⅰ)若时函数有极值,求的值;(Ⅱ)求函数的单调增区间;(Ⅲ)若方程有三个不同的解,分别记为,证明:的导函数的最小值为
(本小题满分12分)某投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入为50万元.设表示前年的纯利润总和, 表示前年的总支出. [前年的总收入-前年的总支出-投资额].(1)写出的关系式(2)写出前年的纯利润总和关于的函数关系式;并求该厂从第几年开始盈利?(3)若干年后,投资商为开发新项目,对该厂有两种处理方案:①年平均纯利润达到最大时,以48万元出售该厂;②纯利润总和达到最大时,以16万元万元出售该厂,问哪种方案更合算?
(本小题满分12分) 已知等差数列的前9项和为171.(1)求;(2)若,从数列中,依次取出第二项、第四项、第八项,……,第项,按原来的顺序组成一个新的数列,求数列的前项和.
(本小题满分12分)设函数,其中(1)求出的最小正周期和单调递减区间;(2)求在[上最大值与最小值.
(本小题满分12分) 设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且 (Ⅰ)求B的大小;(Ⅱ)若,且△ABC的面积为,求的值.