函数⑴求证:的图像关于直线y=x对称;⑵函数的图像与函数的图像有且只有一个交点,求实数的值;⑶是否存在圆心在原点的圆与函数的图象有且只有三个交点,如果存在,则求出此圆的半径;如果不存在,请说明理由。
某商店试销某种商品,获得如下数据:
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货再补充3件,否则不进货。 (Ⅰ)求当天商品不进货的概率; (Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望。
已知椭圆,直线l为圆的一条切线,且经过椭圆C的右焦点,直线l的倾斜角为,记椭圆C的离心率为e. (1)求e的值; (2)试判定原点关于l的对称点是否在椭圆上,并说明理由。
已知在的展开式中,第6项为常数项. (1)求n; (2)求展开式中所有的有理项.
某射手击中目标的概率为0.8,每次射击的结果相互独立,现射击10次,问他最有可能射中几次?
已知函数. (1)若在上的最大值为,求实数的值; (2)若对任意,都有恒成立,求实数的取值范围; (3)在(1)的条件下,设,对任意给定的正实数,曲线上是否存在两点、,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由。