某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?
已知与是反比例函数图象上的两个点. (1)求的值; (2)若点,则在反比例函数图象上是否存在点,使得以四点为顶点的四边形为梯形?若存在,求出点的坐标;若不存在,请说明理由.
已知,如图,正方形的边长为6,菱形的三个顶点分别在正方形边上,,连接. (1)当时,求的面积; (2)设,用含的代数式表示的面积; (3)判断的面积能否等于,并说明理由.
学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表: 用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和微章前,了解到如下信息: (1)求一盒“福娃”和一枚徽章各多少元? (2)若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?
已知经过,,,四点,一次函数的图象是直线,直线与轴交于点. (1)在右边的平面直角坐标系中画出,直线与的交点坐标为; (2)若上存在整点(横坐标与纵坐标均为整数的点称为整点),使得为等腰三角形,所有满足条件的点坐标为; (3)将沿轴向右平移个单位时,与相切.
如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等. (1)设菱形相邻两个内角的度数分别为和,将菱形的“接近度”定义为,于是,越小,菱形越接近于正方形. ①若菱形的一个内角为,则该菱形的“接近度”等于; ②当菱形的“接近度”等于时,菱形是正方形. (2)设矩形相邻两条边长分别是和(),将矩形的“接近度”定义为,于是越小,矩形越接近于正方形. 你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.