如图,小亮晚上在路灯下散步,已知灯杆OA=6.4m,他从灯杆底部的点O处沿直线前进9m到点D时,其影长DF=3m,当他继续前进到达点F时,其影子是变长还是变短?变化量为多少?
如图,在矩形ABCD中,AB=3cm,AD=4cm,点E是BC上一动点(不与B、C重合),且DF⊥AE,垂足为F. 设AE=xcm,DF=ycm.求证:△DFA∽△ABE;试求y与x之间的函数关系式,并求出自变量的取值范围.
如图①,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D。求证:∠DAC=∠BAC;若把直线EF向上平行移动,如图②,EF交⊙O于G、C两点,若题中的其它条件不变,猜想:此时与∠DAC相等的角是哪一个?并证明你的结论。
把一副三角板如图甲放置,其中,,,斜边,。把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙)。这时AB与CD1相交于点,与D1E1相交于点F。求的度数;求线段AD1的长;若把三角形D1CE1绕着点顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?说明理由。
如图,⊙O是Rt的外接圆,,点P是圆外一点,PA切⊙O于点A,且PA = PB。求证:PB是⊙O的切线
如图,⊙A、⊙B、⊙C两两不相交,且半径都是2cm,图中的三个扇形(即三个阴影部分)的面积之和是多少?弧长的和为多少?