如图,矩形OABC摆放在平面直角坐标系xOy中,点A在x轴上,点C在y轴上,OA=3,OC=2,P是BC边上一点且不与B重合,连结AP,过点P作∠CPD=∠APB,交x轴于点D,交y轴于点E,过点E作EF∥AP交x轴于点F.(1)若△APD为等腰直角三角形,求点P的坐标;(2)若以A,P,E,F为顶点的四边形是平行四边形,求直线PE的解析式.
如图,为美化校园环境,某校计划在一块长为60米,宽为4米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为米. (1)用含的式子表示花圃的面积. (2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽. (3)已知某园林公司修建通道、花圃的造价(元)、(元)与修建面积之间的函数关系如图13-2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?
如图,在□ABCD中,E、F分别是AB、DC边上的点,且AE=CF, (1)求证:≌. (2)若DEB=90,求证四边形DEBF是矩形.
今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(图11-1)和扇形统计图(图11-2),根据图表中的信息解答下列问题:
(1)求全班学生人数和的值. (2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段. (3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.
如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4). (1)画出ABC关于y轴对称的; (2)将ABC绕着点B顺时针旋转90后得到,请在图中画出,并求出线段BC旋转过程中所扫过的面积(结果保留).
先化简,再求值:.