己知等比数列所有项均为正数,首,且成等差数列.(I)求数列的通项公式;(II)数列的前n项和为,若,求实数的值.
设(是正整数),利用赋值法解决下列问题:(1)求;(2)为偶数时,求;(3)是3的倍数时,求。
已知:对于任意的多项式与任意复数z,整除。利用上述定理解决下列问题:在复数范围内分解因式:;求所有满足整除的正整数n构成的集合A。
如图,已知正三棱柱ABC-A1B1C1的底面边长为8,侧棱长为6,D为AC中点。(1)求证:直线AB1∥平面C1DB;(2)求异面直线AB1与BC1所成角的余弦值
如图,AB是底面半径为1的圆柱的一条母线,O为下底面中心,BC是下底面的一条切线。(1)求证:OB⊥AC;(2)若AC与圆柱下底面所成的角为30°,OA=2。求三棱锥A-BOC的体积。
设函数(其中).(1)当时,求函数的单调区间;(2)当时,求函数在上的最大值.