如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,,平面底面,是的中点.(1)求证://平面;(2)求证:;(3)求三棱锥的体积.
(本小题满分10分)【选修4—1:几何证明选讲】 如图,在正中,点分别在边上,且,,相交于点 (1)求证:四点共圆; (2)若正的边长为2,求,所在圆的半径.
(本小题满分12分)已知函数(为无理数,) (1)求函数在点处的切线方程; (2)设实数,求函数在上的最小值; (3)若为正整数,且对任意恒成立,求的最大值.
(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,H是正方形AA1B1B的中心,AA1=2,C1H⊥平面AA1B1B,且C1H=. (1)求异面直线AC与A1B1所成角的余弦值; (2)求二面角A-A1C1-B1的正弦值; (3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.
(本小题满分12分) 已知数列中,,前项和. (1)求数列的通项公式; (2)设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求出的最小值;若不存在,请说明理由.
(本小题满分12分)如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在AB上,且OM∥AC. (1)求证:平面MOE∥平面PAC; (2)求证:平面PAC⊥平面PCB; (3)设二面角M-BP-C的大小为θ,求的值.