如图,已知正三棱柱的各棱长都是4,是的中点,动点在线段上,且不与点、重合.(1)若,求平面与平面的夹角的余弦值;(2)求点到直线距离的最小值.
在平面直角坐标系中,抛物线C的顶点在原点,焦点F的坐标为(1,0)。(1)求抛物线C的标准方程;(2)设M、N是抛物线C的准线上的两个动点,且它们的纵坐标之积为,直线MO、NO与抛物线的交点分别为点A、B,求证:动直线AB恒过一个定点。
已知圆的极坐标方程为: .⑴将极坐标方程化为普通方程;⑵若点P(x,y)在该圆上,求x+y的最大值和最小值.
已知矩阵A=,若矩阵A属于特征值6的一个特征向量为α1=,属于特征值1的一个特征向量为α2=.求矩阵A,并写出A的逆矩阵.
(本小题满分16分)已知,,且直线与曲线相切.(1)若对内的一切实数,不等式恒成立,求实数的取值范围;(2)当时,求最大的正整数,使得对(是自然对数的底数)内的任意个实数都有成立;(3)求证:.
已知有穷数列共有项(整数),首项,设该数列的前项和为,且其中常数⑴求的通项公式;⑵若,数列满足求证:;⑶若⑵中数列满足不等式:,求的最大值.