(本小题满分12分)已知a∈(0,π)且cos(a-)=。求cosa
(本小题满分13分)某电视生产企业有A、B两种型号的电视机参加家电下乡活动,若企业投放A、B两种型号电视机的价值分别为a、b万元,则农民购买电视机获得的补贴分别为万元(m >0且为常数).已知该企业投放总价值为10万元的A、B两种型号的电视机,且A、B两种型号的投放金额都不低于1万元.(Ⅰ)请你选择自变量,将这次活动中农民得到的总补贴表示为它的函数,并求其定义域;(Ⅱ)求当投放B型电视机的金额为多少万元时,农民得到的总补贴最大?
(本小题满分13分)如图5所示:在边长为的正方形中,,且,,分别交、于两点, 将正方形沿、折叠,使得与重合,构成如图6所示的三棱柱 . ( I )在底边上有一点,且::, 求证:平面 ;( II )求直线与平面所成角的正弦值
(本小题满分12分)第4届湘台经贸洽谈交流会于2011年6月在我市举行,为了搞好接待工作,大会组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“ 非高个子”,且只有“女高个子”才担任“礼仪小姐”。(I)如果用分层抽样的方法从“高个子”中和“非高个子”中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?(II)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望。
在直角坐标系中,已知:,,为坐标原点,,.(Ⅰ)求的对称中心的坐标及单调递减区间;(Ⅱ)若.
已知,函数,(其中为自然对数的底数).(1)判断函数在上的单调性;(2)是否存在实数,使曲线在点处的切线与轴垂直? 若存在,求出的值;若不存在,请说明理由.(3)若实数满足,求证:。