(本小题满分13分)某电视生产企业有A、B两种型号的电视机参加家电下乡活动,若企业投放A、B两种型号电视机的价值分别为a、b万元,则农民购买电视机获得的补贴分别为万元(m >0且为常数).已知该企业投放总价值为10万元的A、B两种型号的电视机,且A、B两种型号的投放金额都不低于1万元.(Ⅰ)请你选择自变量,将这次活动中农民得到的总补贴表示为它的函数,并求其定义域;(Ⅱ)求当投放B型电视机的金额为多少万元时,农民得到的总补贴最大?
(本小题满分12分)已知函数,. (Ⅰ)若函数在定义域上是增函数,求a的取值范围; (Ⅱ)求的最大值.
(本小题满分12分)已知圆,点,以线段AB为直径的圆内切于圆,记点B的轨迹为. (Ⅰ)求曲线的方程; (Ⅱ)直线AB交圆于C,D两点,当B为CD中点时,求直线AB的方程.
(本小题满分12分)如图,在斜三棱柱中,侧面与侧面都是菱形,,. (Ⅰ)求证:; (Ⅱ)若,求四棱锥的体积.
(本小题满分12分) 为了研究某种细菌在特定环境下,随时间变化繁殖情况,得如下实验数据:
(Ⅰ)求y关于t的线性回归方程; (Ⅱ)利用(Ⅰ)中的回归方程,预测时,细菌繁殖个数. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:,.
(本小题满分12分)设数列的前n项和为,满足,且. (Ⅰ)求的通项公式; (Ⅱ)若成等差数列,求证:成等差数列.