(本小题满分12分)某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。(1)求的值;(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大。
若,是第四象限角,求的值.
为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:
(1)分别求甲、乙两运动员最大速度 的平均数,及方差,; (2)根据(1)所得数据阐明:谁参加这项重大比赛更合适.
(本小题满分14分)已知函数. (Ⅰ)若函数为偶函数,求的值; (Ⅱ)若,求函数的单调递增区间; (Ⅲ)当时,若对任意的,不等式恒成立,求实数的取值范围.
(本小题满分14分)已知半径为2,圆心在直线上的圆C. (Ⅰ)当圆C经过点A(2,2)且与轴相切时,求圆C的方程; (Ⅱ)已知E(1,1),F(1,-3),若圆C上存在点Q,使,求圆心的横坐标的取值范围.
(本小题满分14分)如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示. (1)证明:AD⊥平面PBC; (2)求三棱锥D-ABC的体积;