如图,平面平面,是以为斜边的等腰直角三角形,分别为,,的中点,,.(1)设是的中点,证明:平面;(2)证明:在内存在一点,使平面,并求点到,的距离.
(本小题满分13分)设△ABC的内角A、B、C的对边长分别为a、b、c,设S为△ABC的面积,满足. (Ⅰ)求B; (Ⅱ)若,设,,求函数的解析式和最大值.
(本题10分)如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。 求证:(1)PA∥平面BDE (2)平面PAC平面BDE
(本小题满分10分)已知两直线和直线,试确定的值,使 (1)和相交于点; (2)且在y轴上的截距为.
已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn,且有Sn=2bn-1, (1)求{an},{bn}的通项公式. (2)若cn=anbn,{cn}的前n项和为Tn,求Tn.
在中,的对边分别为,已知 (Ⅰ)求的值; (Ⅱ)若,求的面积.