已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn,且有Sn=2bn-1,(1)求{an},{bn}的通项公式.(2)若cn=anbn,{cn}的前n项和为Tn,求Tn.
已知函数的图像过坐标原点,且在点处的切线的斜率是. (1)求实数的值; (2)求在区间上的最大值; (3)对任意给定的正实数,曲线上是否存在两点,使得是以为 直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.
已知函数 (Ⅰ)求函数的最大值; (Ⅱ)若对任意,不等式恒成立,求实数的取值范围; (Ⅲ)若,求证:.
在数列中,,且. (Ⅰ) 求,猜想的表达式,并加以证明; (Ⅱ)设,求证:对任意的自然数都有.
已知函数. (Ⅰ)求曲线在点处的切线方程; (Ⅱ)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.
已知展开式各项系数的和比它的二项式系数的和大992. (Ⅰ)求n; (Ⅱ)求展开式中的项; (Ⅲ)求展开式系数最大项.