某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元.该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元.(1)试分别建立出厂价格、销售价格的模型,并分别求出函数解析式;(2)假设商店每月购进这种商品m件,且当月销完,试写出该商品的月利润函数;(3)求该商店月利润的最大值.(定义运算
(本小题满分12分) 在清明节前,哈市某单位组织员工参加植树祭扫,林管局在植树前为了保证树苗质量,都会对树苗进行检测,现从甲、乙两种树苗中各抽测了10株树苗的高度,量出它们的高度如下:(单位:厘米) 甲:37 21 31 21 28 19 32 23 25 33 乙:10 30 47 27 46 14 26 11 43 46 (1)根据抽测结果画出茎叶图,并根据你所填写的茎叶图对两种树苗高度作比较,写出3个统计结论; (2)如果认为甲种树苗高度超过30厘米为优质树苗,那么在己抽测的甲种10株树苗中任选两株栽种,记优质树苗的个数为,求的分布列和期望.
(本小题满分12分)如图,在中,,, (1)求; (2)记BC的中点为D,求中线AD的长.
(本小题满分12分)设 (1)求 | z1| 的值以及z1的实部的取值范围; (2)若,求证:为纯虚数.
(本大题12分)己知下列三个方程,,至少有一个方程有实根,求实数的取值范围.
(本大题12分)新课标要求学生数学模块学分认定由模块成绩决定,模块成绩由模块考试成绩和平时成绩构成,各占50%,若模块成绩大于或等于60分,获得2学分,否则不能获得学分(为0分),设计一算法,通过考试成绩和平时成绩计算学分,并画出程序框图.